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The structures of a space of absolute parallelism are investigated in terms of differential
topology and the possible additional constraints imposed by equivalence classes of metrics.
A connection is made between projective spaces of absolute parallelism and those physical
systems that can be described by a 1-form of Action.

Preface

This article started out to be amore or less detailed (but partial) commentary on G .I. Shipov’'s
book " The Theory of the Physical Vacuum” (Evidently printed by the Moscow ST-Center, Russia,
1998 ISBN 5-7273-0011-8). The book arrived from the US on 08/17/99 at my mas in France, thanks
to V. Poponin). Shipov had a email address of shipov@aha.ru (but the book was written evidently
when he was a member of the International Institute for Theoretical and Applied Physics, RANS) and
V. Poponin had an email address of vpo-ponin@sg.znet.com (summer 1999). | do not know if the two
email addresses are valid at present. | got the book by sending $115.00 to V. Poponin, who mailed a
copy to me in France. Poponin’s address was

Vladimir Poponin, Ph.D. vpoponin@g.znet.com

International Frontier Science Study Group

P.O. Box 421972

San Francisco, CA 94142-1972

Td: 415-922-5776

Fax: 415-922-5715

As| studied and reread Shipov’ s work in more detail it became evident that there was need for
clarification in certain areas. | got confused in the detail of tensor notation caused by certain
ambiguities of index conventions. That which follows is an attempt to make (at least part of) Shipov’'s
work more transparent by taking care of notation and producing both a matrix and an index
presentation. The order of matrix products isimportant.

| ntroduction

In classical mechanics, the vacuum istypically characterized to be an empty void with a 3D
euclidean structure, and euclidean substructures. Particles are considered as entities placed in this void
which undergo motions characterized by a parameter, called time. The theory of electromagnetic fields
extends the mechanical concept of the vacuum to a4D variety that will support electromagnetic waves.
In order to preserve the singular solutions (propagating el ectromagnetic discontinuities defined as
signals[1]) to Maxwell’ s theory, the 4D vacuum apparently must have some structure. That is, the
singular solutions belong to an equivalence class of 4D systems related to one another either by the
linear Lorentz transformation, or by the non-linear Mobius (projective) transformations [2]. If different
observers are related by a Lorentz transformation to the vacuum, then if one observer detects a
propagating electromagnetic discontinuity, so will the Lorentz related observer detect a propagating



electromagnetic discontinuity. The vacuum is then defined as the restricted 4D variety that is
constrained by the imposition of the Minkowski metric, and the varieties equivalent to it under the
transformations mentioned above. In practice, the non-linear Mobius transformations are mostly
ignored.

The metric theory of gravitational fields seems to indicate that the vacuum with a gravitational field
must have metric structure that is not among the equivalence class of Lorentz transformations that
include the Minkowski pseudo euclidean metric. Quantum theory further complicates the view of the
vacuum by consideration of virtual states and pair production. The question remains: Just what isthe
physical vacuum? It apparently is not the void of a euclidean space with euclidean substructures, but
current science seemsto indicate that it is at least a4D variety.

In his book ” The Theory of the Physical Vacuum” G. Shipov offers the interesting conjecture that
the Physical Vacuum is 4 dimensiona space of Absolute Parallelism. Asa4 dimensiona euclidean
space is a space of absolute parallelism, at first glance it would appear that the Shipov definition of the
vacuum is far too constrained to be of interest. Although euclidean spaces are examples of (often said
to be "trivial”) spaces of absolute parallelism, but spaces of absolute parallelism are not just euclidean
"voids’. Spaces of absolute paralleelism can admit definite substructures that (according to Shipov)
have physical significance. For thisidea Shipov deserves applause.

Consider a4D variety that supports amatrix of C2 functions such that over the domain of support
the determinant of the matrix is never zero. The matrix is defined as the Basis Frame, or Repere
Mobile. The differentiable basis frame permits the decomposition of vector fields not only at every
point, but also in their nearby neighborhoods through awell defined linear connection. Asthe basis
frame [F] never has a zero determinant, the inverse basis frame [G] exists globally and is well defined
algebraicaly. A linear connection is derived by exterior differentiation of the identity [F|o[G]= [I] to
give either

dF]-[FJ[C] =0 or d[F]+[A][F] =0.
The matrix [C] is defined as the right Cartan matrix of connection 1-forms.  The matrix [A] is defined
as the left Cartan matrix of connection 1-forms. These connection equations are used to definewhat is
meant by parallel transport. [3]

By repested exterior differentiation it is possible to show that the Cartan matrix of curvature
2-forms [©®] vanishes:

[0] = {[C]"[C] +d[C]} = [0]
Next, consider the representation of a set of differentialsin terms of the basis frame:
jax*y = [I] o Jdx*) = [F] o [G] o [dX*) = [F]  |o)
Repeated exterior differentiation implies that the Cartan vector of Torsion 2-forms, [~) vanishes:
[£) = {[C]e o)+ |do)} = 0.

A space of absolute paralelism is defined as a variety for which the both Cartan vector of torsion
2-forms [£) and the Cartan matrix of curvature 2-forms [® ] vanish. The development above thereby
shows that any space that supports aglobal basis frame with non-zero determinant is a domain of
Absolute Parallelism. Perhaps the simplest example is a projective space which supports at each point
aprojective matrix of functions with non-zero determinant. These matrices define the general linear
group, which has two components. The first component admits an identity element (det >1), but the
second component does not (det <1).

From this point forward the focus will be on such varieties that support a global Basis Frame of
functions. Such spaces of absolute parallelism can have subspaces of interesting and unexpected
structure. For example, spaces of absolute parallelism can support aright Cartan matrix of connection
one forms that have certain anti-symmetry properties (of the 3 indexed coefficients C. ) associated




with the torsion of an affine connection (Cf. — Cg, # 0). Yet the Cartan vector of torsion 2-formsis
zero! (This observation emphasizes that the two types of torsion are not the same.) If the Frame
matrix can be constructed from the Jacobian matrix of a parametric integrable map, then the Cartan
connection matrix is always symmetric (in the lower indices), and the concept of Affinetorsionis
empty (C. — C&, = 0). Exact integrable maps imply that the domain is free of Affinetorsion.
Moreover, if the Jacobian matrix of the map is orthogonal, then the three index connection coefficients
of the right Cartan matrix are precisely the same as those constructed from the Christoffel formula
based on an induced metric.

From that which was mentioned above, the question arises: Isthe arbitrary basis frame [F|
imposed on a variety uniquely integrable such that the parametric map can be determined? Note that
the concept of a space of absolute parallelism does not require such unique integrability. Infact, if the
basis frameis uniqudly integrable, the connection is affine torsion free. The question of unique
integrability leads to the concept of ”topological” torsion, which is not the same as the affine torsion,
nor the same as Cartan’ s torsion 2-forms. Topologica torsion is related the arbitrary Frobenius
integrability of the Basis Frame, or Repere Mobile, and itsinverse, which are characteristic of a space
of absolute parallelism.

The first question of integrability is: Given [F5(£P)] as abasis frame, are the linear combinations
5% = FK(&P)d&s? perfect differentials, 5% = dx* ? A necessary condition is that the exterior derivative
of 5% must vanish. The requirement can be expressed by the equation.
exact integrability : d([FK(EP)]MdERY) = [FX(EP)] o [CIMdERY = 0.
The equation requires that [C]*|dé?) = 0, which impliesthat the right Cartan matrix must consist of
coefficients such that (C. — C3, = 0). Hence exact integrability of the basis frame precludes &ffine
torsion.

However, it may be true that the §% admit integrating factors A(£2). That is, each row of the
given Frame matrix can be multiplied by afunction to yield a new Frame matrix [F]" such that the new
0¥ are exact.

[F]' = [diagonal 2*(5?)] ° [F]
The affine torsion relative to the old frame need not be zero, and yet through integrating factors, the

origina non-integrable to exactness Frame can be transformed (globally) to an integrable one. For this
to be possible it must be true that the topological torsion of each 6% must vanish:
Frobenius integrability requires : s~ d(s%) = 0.
Such integrable, but not exact, frames can support affine torsion such that (C§. — C3, + 0). Thisresult
hasitsimage in hydrodynamics. Potential flows are streamline flows without vorticity (curlv = 0).
There exists a parametric map to define the flow, and the flow is free of affine torson. Lamb flows are
streamline flows where the vorticity is not zero. However, the velocity field components are such that
they satisfy the Frobenius condition. Hence there exists a parametric map, but the origina flow admits
affine torsion.

It may be true that a particular Frame field admits integrability for none of its 6%, part of its 5%, or
for al of its §¥. For example the Hopf Map generates a Frame which has 3 integrable % and 1
non-integrable 6¥. On the other hand, the instanton frame has 3 non-integrable 5% and 1 integrable 5.

Thisidea of spaces of absolute parallelism was also of interest to me, as | had (over the years)
managed to understand Cartan’ s structural equations, which on first reading of Cartan seem to appear
"out the blue”. By use of (Whitney) embedding techniques, | could formulate examples of spaces
involving non-zero Cartan curvature 2-forms and non-zero Cartan torsion 2-forms as subspaces of
Euclidean spaces. The subspaces of euclidean spaces can be used to define most properties of a
manifold. However, for spaces of absolute parallelism, the algebra of Cartan’s structural equationsis
nicely exhibited in the guise of projective geometries of dimension n+1.




See http://www22.pair.com/csdc/pdf/defects2. pdf

Proj ective geometries of absolute parallelism

Recall that a projective geometry is represented by a n+1 dimensional domain that supports an n+1
by n+1 Projective Matrix of functions with arguments over the n+1 independent variables. The sole
requirement of such a” Projective Matrix” isthat the matrix determinant is not equal to zero, thereby
defining the projective domain of support of the independent variables. Such projective spaces are
spaces of absolute parallelism, for the Cartan structural equations (as will be shown below) vanish over
those values of independent variables which form the projective domain of support. That is, the Cartan
curvature 2-forms and the Cartan torsion 2-forms vanish for projective geometries.

Projective geometries can be further constrained to form equivalence classes of Projective
Matrices. For example, a subgroup of the projective group of matrices are those with determinant +1.
Such projective transformations preserve orientation. Another example of a subgroup defines the class
of particle Affine transformations. These are examples of subgroups that do not require a metric
constraint. Further constraints can be imposed by specification of ametric.

On the domain of support, a Projective Matrix may be viewed as a matrix of linearly independent
basis vectors which can be used to define arbitrary vector quantities on the domain. An equivalence
class of basis matrices, has an element that can be used to define a Basis Frame [F|, or as Cartan puts
it, "the Repere Mobile.” A major question is how agiven class of Basis Frames are differentially
constrained in their neighborhoods. This question leads to the idea of a Connection. There are two
types of connections, depending on whether an active or passive viewpoint is utilized. Herein the two
points of view will be distinguished by the definitions given below for the ” Cartan (left) Connection”
and the ” Cartan (right) Connection”. It isaremarkable feature that both methods are applicable.

Due to notational inconsistencies (from this reader’s point of view), it is not clear whether Shipov
favorsthe left or the right Cartan connection. On p.181, and assuming that the symbol €}, stands for an
array of contravariant columns, it would appear that A}k as defined by eq (0.2) on p.181 and (5.18) on
p. 187 is associated with the left Cartan connection. However on page 185 Shipov states that ejb
transforms as a (contra) vector, but then gives the rule for co-vector transformation in eq (5.3). Thisis
very confusing. In that which followsit will be presumed that Shipov focuses most attention on A}k,
the Cartan (left) connection. In order to distinguish this point of view, hereafter the Cartan (Ieft)
connection will be called the Shipov connection, and the Cartan (right ) connection will be called the
Cartan connection. Certain anti-symmetric portions of the Shipov connection will be defined as the
Shipov torsion, where certain anti-symmetric portions of the Cartan connection will be defined as
Affinetorsion. The two concepts are not the same, for the anti-symmetries are different. For example,
the anti-symmetries of the Cartan connection are zero for basis frames which are Jacobian matrices of
parametric mappings. (Affinetorsion does not exist for integrable parametric maps.) The
anti-symmetries of the Shipov connection (defined as Shipov torsion) are not zero for the same types of
basis frames.

It should be emphasized before going any further that the concept of the Cartan vector of Torsion
2-forms (which vanish on a space of absolute parallelism) is not equivalent to the concept of either
Shipov torsion or Affine torsion, both of which need not vanish on a space of absolute parallelism.

Although most interest will be placed upon the domain of support, the regions for which the
determinant of the matrix of functions vanishes (the compliment to the domain of support) determines
hypersurfaces with specific and important topological features associated with its compliment. These
hypersurfaces sometimes can be interpreted as non-stationary domains of propagating discontinuities,
which are useful in defining shock waves, shear wakes, and electromagnetic signalsin physical
systems.

The Shipov Connection vs. the Cartan Connection



The trandation from Russian to English in Shipov’ s book is very satisfactory (there are only afew
places where the English words used in the trand ation seem strange and do not flow smoothly), but
there are a significant number of typos, which in a book such as this one, which makes heavy duty
extensive use of tensor indices, can lead to difficulties now and then. The major problem for me was
one of notation, and asis usua in many tensor treatments, what are the independent variables. For
example Shipov on page 185 defines ejb as a(contra-variant) vector and the symbol €}, as a co vector,
but thisisinconsistent with the transformation rule given by eg. (5.3) - which isthe classic rule for
covariants, and classic tensor conventions where the upper index is the contraindex and the lower
index isthe co index. Themore | study Shipov’s book, the more confused | get in deciding which (in
Shipov’ s mind) isthe basis frame (of contravariant column vectors) and which isthe inverse basis
frame. Therefor | have rewritten the origina commentary on Shipov’ s book into a more well defined
format. | hope that | have not mis-interpreted Shipov’ s concepts.

| am used to the constraint (for a space of absolute parallelism) that the exterior differential of a
basis frame be closed, forming a differential ideal. This closure constraint isatopological idea. That
is, the exterior differential of any basis vector in the set is alinear combination of basis vectors of the
set. This concept of closure isaso in the spirit of the Cartan use of exterior algebra: the exterior
product of elements of the algebra are closed in afinite sense.

From the definition of a Basis Frame matrix of functions, [F], itsinverse, [G], and the equation

[F]°[G] = [1],
it isremarkable that the differentials of the basis frame, d[F], can be expressed in two different ways.
The closure point of view places emphasis on the Cartan connection, [C] amatrix of 1-forms defined
such that

Cartan : d[F]-[F]~[C] = 0.
The (right ) Cartan connection [C] acts on the basis frame [F] from the right. On the other hand
Shipov seems to place emphasis on a different point of view based on the formula,
Shipov : d[F]+[A]e[F] = 0.
The left Cartan or Shipov connection [A] acts on the basis frame [F] from the | eft.

The two formulations are not the same, for the Cartan (right matrix) of connection 1-forms implies

that the differential of any column basis vector is alinear combination of al column basis vectors of the
Set.

el e} e e} e;
2 2 2 2 2
e e e e e
dll— ) = |2 JCL+ |21 )C3+| = )C3+| =1 )Ci
el e} e e es
et e} e3 e} el

Thisisaconcept of closure, a concept which isinherent in much of Cartan’swork. The formulation is
related to a” passive’ interpretation of the action of the total differential on any basis column vector.

The Shipov Connection (or Cartan |eft matrix connection) operates on the components of a given
vector

et Alel + Ales + Aled + Aled
q e3 A%el + A%es + A3ed + Azed
el Ajel + A3es + Aded + Aed
el Ajel + Ades + Afed + Ajed

The Shipov connection implies that the differential of any column vector is an active operation on that



column vector, and does not involve the other column basis vectors.

The remarkable feature of spaces of absolute parallelism is that they offer these two points of view.
One involves the change of areference frame and the other involves an operation in afixed frame.
This duality apparently extends the idea of relativity beyond that of a metrically constrained system.

It will be demonstrated below that the two connection matrices of 1-forms[C] and [A] are
conjugates related by a (negative) similarity transformation (where [F] o [G] = [1]),
[A] = —[F]~ [C] - [G].
Hence to afactor of minus 1, the smilarity invariants of both connections are the same. From a
topological point of view, thisimplies that different spaces of absolute parallelism can be classified
according to their smilarity invariants. Thistopic is not discussed by Shipov, but will be taken up by
the present author.

The Integrable Parametric Case

The (right) Cartan connection

In order to set the stage, to get rid of notational inconsistencies, and to make the understanding of
spaces of absolute parallelism a bit more transparent, consider the special case of a space of absolute
parallelism defined by a parametric map, ¢, from n variables (or parameters) {£°} of theinitial state
into aspace of n variables {x*} of thefina state.
1 & = x = ¢4
An example is given by the position vector with components {ct,x,y, z; given in terms of spherical
coordinates {ct, rsin(6)cos(¢),rsin(@)sin(p),rcos(0)}. The differentials are related by the equation

dg : [d5?) = Jdx*) = [09"(5")/0&?] o [dE®)
1 0 0 0 1 e
B 0| sin(@) cos(e) | rcos(f) cos(p) | —rsin(@) sSin(p) dr
- 0 sn(@)sin(e) | rcos(@)sin(e) | rsin(@) cos(p) ’ do
0 cos(0) —rsin(d) 0 do

The matrix of partial differentialsis the Jacobian matrix of functions with arguments on the initial state.
No metric and no domain of support has been specified. In that which follows the domain of support is
defined as that set of values £° on theinitial state, where the Jacobian determinant does not vanish
(r?sin(0) # 0). The Jacobian matrix can be viewed as amatrix of contravariant vectors (on the final
state, x*) in columns, and can be used as a basis frame (with arguments on the initia state £°) on the
domain of support (where det[0¢*(£P)/0£2] + 0). That is, assume the basis frame is given by a set of
contravariant columns with row index k and column index a and with arguments on £° :

[F&] = [0g"(&P)/0g?].
As yet there has been no metric imposed upon the space, but even without specification of ametricitis
possible to use the general formulas given above to define a Cartan connection

d[F] = [F] o [C] = [F] o [-d[G] o [F]] = [F] ° [[G] = d[F]]
or a Shipov connection,
d[F] = [A] o [F] = [-[F] > d[G]] = [F] = [d[F] > [G]] = [F]

In classical tensor analysis, the concept of an affine connection is associated with the (right) Cartan
matrix (ref. L. Brand) asfollows. (Remember, al the functions have arguments £¢)




d[Fk] = [FK] » [Chd&] = [F§] e [[GP] o d[Fh]]
= [F§] o [[G ] » [{0%}(™/0& 052 ds°] ].

Asthe system isintegrable and (assumed) twice differentiable, it follows that the coefficient functions

of the connection are symmetric

Co = i = Tea = [G ] o [{0%¢(EM)/0& 05} dE°].

In fact, if one computes the pullback metric gan on theinitial domain {£€} induced by the quadratic

form on the fina state, 17jdx! dx*

[9ap(£9)] = [Fh ] o [ o [FE],
and then uses the classic Christoffel formulas for deriving a connection from a metric,
Christoffel : T9.(£€) = {5} = g°{00ce/0E2 + 0Qeal OEC — 0Qacl LS.
it follows that, for a Jacobian basis frame, the Cartan connection is the same as the Christoffel
connection, and the connection is (affine) torsion free:

If [F&] = [09 (&")/0&2], then CZ: = {&}-
In general, the basis frame [ F | need not be deduced from an integrable mapping. The

coefficient functions of the (right) Cartan matrix, symbolized by C5.(£€), are not necessarily
symmetric in the lower indices, and the symmetric parts are not necessarily generated by the
Chrigtoffel formulas. It is of some interest to decompose the Cartan connection into its symmetric and
anti-symmetric parts.

Cgc = rgc + a)gc
It is the anti-symmetric parts, 3. = o2, of the (right) Cartan connection that lead to the concept of
Affinetorsion. Note that this has nothing to do with metric. (Compare Shipov (5.77)). Itisaso
possible to think of the symmetric part of the Cartan connection to be composed of a Christoffel part
and a non-Christoffel part.

rgc = {gc} + Tb

(ac)

The combination

Tgc = TP

(ac)

+ 0l

forms what Shipov defines as the Ricci rotation coefficients.

For the integrable case, the Jacobian formulation of a basis frame does NOT generate affine
torsion, and the Ricci rotation coefficients vanish. A two surface immersed into 3 euclidean
dimensions does not have affine torsion. (It must be remembered that the basis frame and the
connection are defined in terms of the variables of the initia state, {£°)).

A Maple work sheet giving examples of these constructions can be obtained at

http://www22.pair.com/csdc/maple/adsphjac.mws

A pdf file of the output of the Maple computation is at

http://www22.pair.com/csdc/pdf/adsphjac.pdf

The (left) Cartan - Shipov connection.
It is assumed that Cartan left connection is the Shipov connection [A] defined by the equations,
d[FK] + [AldE®T o [FL] = 0

such that

[AldE®] = [Fg] o d[GF] = —d[F§] ° [GF]

For the Jacobian Frame,



AK = —02¢KloEeoE2 o GB
from which it isto be noted that A% is not necessarily symmetric in theieindices. For the spherical
coordinate mapping with the basis frame represented by the Jacobian matrix, there are 19 non zero
partial derivative components to the Shipov connection. The anti-symmetric part of AX is defined as
Shipov torsion, (5.28)

Qre - _1/2(Are - Aléi)-
There are 16 non-zero components to the Shipov torsion as defined above, while the affine torsion 2.
is zero for the same example. Shipov torsion of the left Cartan matrix is not the same as Affine torsion
constructed from the anti-symmetric components of the right Cartan connection, nor isit directly
related to the Cartan torsion 2-forms.

Now iswhere | become truly confused with notation, for Shipov not only decomposes AX, into the
sum of a symmetric and an anti-symmetric parts (which is reasonable), but then also decomposes the
Shipov connection as

Are = {E(e} + TE(e'
From the point of view of the integrable mapping given above, the Christoffel symbols are generated
from the metric on theinitial state (indices abc), not the final state (indicesijk). The metric on the fina
state are constants, hence the associated Christoffel symbols should vanish.
The details of the computations for Jacobian basis framesis given in the Maple program
http://www22. pair.com/csdc/mapl e/adsphjac.mws

Theinverse map and the Cartan connection

Now reverse the direction of the mapping and assume that the final state is the set of variables
{&8) and theinitial state is defined by the variables {x*}-. The given map is of the form
p X = &P = yPd
The differentials are related by the equation

dy : ) = [dEP) = [op (KX o k)
The Jacobian matrix isa set of contravariant columns on the fina state, with arguments on the initial
state. The basisframeisnow chosenas[FL] = [0y P(x)/ox*]. From the definition of theinverse
[FRO)] e [Gh(¥) ] = [1]
it isagain possible to define aright and a left Cartan matrix. Everything is more or less the same as
before, except that the abc indices become ijk indices and the arguments of the functions and
differentials are x* instead of &°.

There is oneimportant difference. The metric on the initial state is presumed to be a set of
constants, [1jx], and therefore its Christoffel symbols vanish. Therefor the right Cartan matrix, now
written as Cj, (x) is not the same as the Christoffel symbolsin theintegrable case. It is possibleto
induce ametric inverse on the fina state with arguments on the initial state by means of the
construction g®(x) = F2n/Fp, find itsinverse, and then compute the inverse g.,(x) on the final state.
Then Christoffel symbols are awkward to compute, for the map giving the x* as functions of &° has not
been specified.

The Basis Frame

Shipov evidently assumes a variety of independent variables upon which can be constructed a basis
frame of functions, €} with (rmk interpretation) a = 0,1, 2,3 as a column (lower) index and
i =0,1,2,3acting asarow (upper) index. The columns of the Basis Frame may be interpreted as



contravariant vectors, or aternatively the rows of the Basis Frame may be viewed as components of
covariant vectors; sometimes both interpretations are applicable.. The domain of interest is
constrained such that the determinant of Basis Frame, €\, consisting of independent rows or columns
of functions of base variables, is not zero. It followsthat an inverse matrix exists, which Shipov
designates with the symbol, e?. | prefer the notation [F.] for the basis frame and [Gjb] for itsinverse,
such that the transpose and the inverse are easily distinguished, and the order of matrix products
becomes obvious.

Now the matrix of functions [F.,] used to define the Basis Frame for a space of absolute
paralelism need not be generated by a parametric mapping. All that is required for the space of
absolute parallelism isthat the identity

[Fale[Gf] = [5)] =[]
isvaid. From thisequation, the total differentials with respect to the independent variables (what ever
they may be) are given by the equation,

d[Fa] o [G] + [Fi] - d[Gf] = [0].
(I believe that this ssimple formulation was first brought to my attention via the works of Coxeter).
Multiplication from the right by the matrix [F},] produces the result
d[F}] + [Fl o d[ G} ] o [F}] = [0],

There are now two possihilities.
Possibility 1 : d[F,] + [Al ] [F, ] = [0],

where

[Al] = [Fh] o d[Gf] = —d[F4] - [Gf]
equivalent to Shipov (5.27) and Shipov (5.24) respectively, and
Possibility 2 : d[FL] - [F.] - [C2] = [0],

where

[C§] = ~d[G}] » [F}] = [Ghl - dIF{T.
The matrix [C§.d&¢] defines the Cartan matrix of connection 1-forms. In Shipov notation,
[CBde®] = [ARAEC],
and the two preceding equations are recognized as being related to Shipov (5.65) and (5.67). Not
until the partial derivatives are required isit necessary to state how (and where) the arguments ¢ of
the connections are defined

Herein, the matrix [ Aj.ds® | will be defined as the Shipov matrix of connection.1-forms, where the
matrix [C{.d&¢] will be defined as the Cartan matrix of connection 1-forms. The two matrices are
distinct, but are (negative) similarity conjugates of one another.
[Ajcdé® ] = ~[Fa] o [CR.dE°] o [GP].
It follows that the total exterior differentials of the basis frame can be expressed as either
Shipov :  d[F}]+[Aldéc]o[FL]=0

or

Cartan : d[F}]—[FL]o[C2.dé] = 0.
The choice of plus or minus signs depends upon historical conventions.
Equivalent formulas can be given for the differentials of the Inverse matrix:

Shipov :  d[G?] - [Gf]o[Afdéc] =0




or

Cartan : d[G?]+[C§.ds]o[GP] = 0.

TheVierbeinsand Cartan’s Equations of Structure

Given the Inverse matrix [G{] it is possible to define a set of 1-forms, defined asthe Vierbeins,
such that (compare Shipov 5.66)

lo?) = [GR] © [dx*).
However, these Vierbein 1-forms may or may not be exact, closed, or integrable in the sense of
Frobenius. From [F&] o |o2) = |dx*), and the assumption, d[dx*) = 0, it follows that

[F&] o {ldo®) + [CE.dE°] o |o°)} = [F&] o £?) = O,
such that the Cartan Torsion 2-forms [£?) generated by the first Cartan structural equation, must
vanish:

£2) = {ldo®) + [C§.d°] o |o°)} = .
Thisresult is vaid whether or not the vierbiens are integrable.

The second structural equation follows by exterior differentiation of
[Fe] o {[C§ASTINCR.dE®] + d[CEE°]} = [Fe] o [OF] = O,
such that Cartan matrix of Curvature 2-forms [©F ] must vanish.

[0F] = {[C§dEIN[CEds°] + d[CEdE°T) = O.

The two constraints

[05] =0 and [£%) =0,
on an n dimensional variety define a space of Absolute Parallelism. (Inthis case, an A4). The only
requirement is that there exist a projective domain of support for the differentiable functions of the
Frame matrix. These equations are equivalent to Shipov 5.73 to 5.76 where Shipov has defined the
Cartan connection [C§] by the symbol [Af]. (Notethat [A§] = [A] ]).

| ntegrability

If aBasis Frame [FL(£2)] is specified on a domain of independent variables, and it is presumed
that the differentials d52 are well defined and exact, it is by no means clear that the induced objects
oxk = FL(£2)dEe are exact perfect differentials, hence integrable. In order to beintegrableit is
required that each of the objects 6x* satisfy the Frobenius integrability conditions (for each fixed k),
oxknd(6xk) = 0. If the conditions are not satisfied, then the §x* are not integrable. If the conditions
are satisfied, integrability may or may not require an integrating factor (for each k).

Suppose that integrability is satisfied without an integrating factor. Then a necessary condition is
that

dFL(E)NdE® = Fo(Che - C)dE™ dz® = 0.
This condition requires that the Cartan (right) connection be symmetric in the lower bc indices. In
other words, integrability to exactness requires that the Affine torsion is zero.

However, the integrability conditions may be satisfied with the use of an integrating factor. In this
situation the Cartan connection need not be symmetric in the lower bc indices. The integrable
connection can generate an Affinetorsion field. However the Topological Torsion, for each k,
vanishes. §x*d(6x*) = 0.

The third case for which there can exist a non-zero affine torsion field is when the Topological
Torsionisnot zero. Then the system is not uniquely integrable. In the integrable parametric example




given above, the affine torsion field vanishes. For the diagonal Frame Field generated from the
"sguare root” of the metric, (see below) the connection generates an Affinetorsion field. Theterms
oxk are not al exact, but do admit an integrating factor. All diagona frame fields have this property.

Additional Metric constraints

If ametric [g,,(£€)] isdefined on the domain of projective support (with inverse metric [G], then
it is possible to define a Christoffel connection from the classic formula,
Christoffel : T'% = {58} = G™{00 /0E2 + 00 o,/ OES — 0 4| OES}.
It is possible to decompose the Cartan (right) connection according to the formula,
Cgc = gc} + Tgc
where the T2, can contain the antisymmetric parts. (see (5.77). In fact, for the Jacobian basis frame,
the T2, = 0.

Shipov on the other hand seems to decompose the ” Shipov connection” A, for parallel transport on
an A4 space into a” Christoffel part” and a”Ricci rotation” (5.28).

[A)] =[G T+ [T -
It is hard to decide how to construct the {}k} as these must depend upon the metric on the fina state.
To substitute the values of the Christoffel symbols on the initid state seem senseless. The
anti-symmetric part of the Shipov connection is (supposedly) included in the Tj,. Shipov definesthe
negative of the anti-symmetric component of A}k asthe”Torsion Field” (eq.5.20):

jSi = _(A}k_ LJ)
Note that the Shipov Torsion field defined from the Shipov connection (which is not necessarily
zer0) isNOT the same asthe Cartan Torsion 2-forms (which are necessarily zero for a space of

absolute parallelism), nor isit the same asthe field generated by the anti-symmetric parts of
the Cartan connection.

An example: The Diagonal Frame generated by the metric of Spherical
Coordinates

Consider the map from spherical coordinates to euclidean coordinates given by the equations above
and note that a Basis Frame of the form

T1lolo] o |]
o100 o
[F] =
oor o
0/0/0|rsn®)
generates the metric
1] o] o o ||
| lol-1] 0 0
91=1 "ol 0 2 0
0 0| 0 | —r2sn(g)?

viathe formula

[0ap(E%)] = [Fh ] o [mi] © [FK],

The diagonal basis frame generates the Cartan connection,




[olo] o 0 ]
(ca] - 00| O 0
0| 0|dr/r 0
0|0 O |dr/r+cot(@)dg
and the Shipov connection
[olo] o 0 ]
4 _|lojo o 0
[AT=1 000 —am 0
00| O |—dr/r—cot(@)dg

The induced metric leads to Christoffel coefficients,

o] o 0 0 ]
e - 0/ 0 —rdo —r sin6d¢
0| doir dr/r | —sin(@) cos(@)d¢
0| d¢/r | cot(@)d¢ | dr/r + cot(9)dd
and Ricci coefficients
o] o 0 0 ]
T - 0 0 +rdo +r sin6dg
0| —doir 0 +sn(6) cos(6)d¢
0| —d¢/r | —cot(0)d¢ 0

with Shipov Torsion coefficients, defined as the anti-symmetric {A}, — A};}/2 and they are equal to the
negative of the Cartan torsion (anti-symmetric) coefficients
a)%l =12r = —le,
a)%l = 1/2!‘ = —le,
w3, = cos(0)/2sn(0) = -Q3,.
These results seem to agree with the Shipov presentation on page 217, for adiagona basis frame,
except that the computations presented by Shipov have been done using ijk indices, where herein the
abc indicesare used. (I am till trying to resolve the differences in notation and perspective. It would
appear that Shipov has switched to the right Cartan matrix for the presentation on p 217).

Note the remarkable differences between the diagonal basis frame and the Jacobian basis frame
given above, athough both are for a spherical coordinate system.

Further exterior differentiation leads to other useful expressions and the Bianchi identities (see
http://www22. pair.com/csdc/pdf/defects2.pdf)

Metric Constraints and Polarities

In Projective Geometries there exist two types of maps, called Collineations and Correlations.
Callineations map points into points and hypersurfaces into hypersurfaces. In tensor analysis think of
collineations as transformations that map contra-variant vectors (points) into contra-variant vectors,
and co-vectors (hypersurfaces) into co-vectors. The Jacobian matrix of a map and its transpose are
examples of collineations. Correlations map pointsinto hypersurfaces and hypersurfaces into points.




The subset of symmetric correlations are defined as polarities. The usua concept of ametric asa
symmetric matrix can be viewed as a map that takes contra-variant vectors into co-variant vectors.
The metric tensor [g,,, | isan example of a symmetric correlation, or a polarity.

**** More on projective geometries later

Appendix

Definition

Theorem

Conjecture

Theorem

Theorem

Theorem

A variety {x} isaspace of Absolute Parallelism if the matrix of Cartan curvature 2-forms @]
and the vector of Cartan torsion 2-forms [~) defined on the variety vanish.

1: Consider an arbitrary matrix [F] of nxn functions on the variety {x} where the variety is now
restricted such that det[F|<> 0. Then the restricted domain is a space of Absolute Parallelism

Shipov: The physical vacuum is a4 dimensiona space of Absolute Parallelism , further
restricted to the Lorentz equivalence class of Basis Frame matrices, [F], such
that [transposeF|[M][F]= [M]. The matrix [M] is the Minkowski index matrix.

2: The domain of support for an arbitrary 1-form of Action on avariety generates a space of
Absolute Parallelism.

3: There exist A4 spaces which DO NOT support akinematic Velocity Field. (The unique
limit of dx/ds = V(Xx,y,z,Ct) does not exist globally.)

4. For abasis frame constructed from an integrable parametric map of maximal rank, the
Affinetorsion on theinitia state is zero, and the Cartan connection generates the Christoffel
symbols for the induced metric on the initia state.

Proof of Theorem 1:
From det[F] <> Othereexists [G] such that [F|[G] = [1].
Hence [dF]| = [F]{-[dG][F]} = [F][C], where[C] isthe matrix of Cartan 1-forms.
The matrix of Cartan curvature 2-formsis defined as

[0] = {[CI"[C} + [dC]}.

The Vierbein 1-forms are defined as

o) = [G] o [dx).

The vector of Cartan torsion 2-formsis defined as

[£) = {[Clefo) + |do)}

As[ddF]= 0, it followsthat [F]o{[C]*[C} + [dC]} = O; hence

[0]= {[C]"[C} +[dC]} = 0.

From

jdx) = [F] e |o)

and as|ddx) = O, it followsthat [F] o {[C] o |o) + |do)}} = O; hence

) = {[Cle o) +|do)} = 0.

QED



Proof of Theorem 2.
Given an arbitrary action 1-form, A = Aydx + Aydy + .. — ¢dt.
Construct algebraically n — 1 associated direction fields e such that

i(eA=0.
example:
¢
0
ler) = |—
Ay
Consgtruct the Frame

[F] = [e1,€e2,...,N]

Choose n to be the direction field with components created by the components of the 1-form of
Action.
Then (for a4D variety)

det[F] = ¢2(AZ + A7+ AZ+¢2) # 0

on the domain of support of ¢.

Hence the restricted domain is a space of Absolute Parallelism, by theorem 1.

These spaces are not necessarily Lorentzian. This method of generating a basis frame connects the
Calculus of variations (based upon Action 1-forms) to spaces of absolute parallelism. Subspaces of
spaces of absolute parallelism may or may not have domains of zero Cartan curvature or zero Cartan
torsion.

If a space of absolute parallelism is further constrained to those matrices of Basis Frames which
are symmetric (such as metrics) then the projective frames (defined as det[F] + 0) produce what are
called polarities. Polarities are specia projective transformations that establish duality relationshipsin
projective geometry.

The Metric induced connection [I'] of 40 component functions may only be part of the Cartan
connection [C] of 64 component functions.

Shipov asserts that the Cartan connection on metric spaces can be composed of a Christoffel
connection (metric and its derivatives) plus another component dependent algebraically upon the
Cartan coefficients and the metric components.

Shipov Torsion isrelated to an antisymmetric combination of the Cartan Connection coefficients.
(It isNOT the same as the Anti-symmetric part of the Cartan matrix of connection 1-forms, and it is
not the same as Topologica Torsion, for Shipov torsion can exist when the Topological Torsionis
zero)

Pr oof of theorem 3:
Assume that

jdx) = V)ds

exists globally.
Then, from the definition of the Vierbeins,

o) = [G] o dx) = [G] = M)ds = Wds,

where the W are functions.



IF true, then

ldo) = [dWY ds,

and

l[o"do) = Wds*dW)™ds = 0.

Hence the Vierbeins must be integrable and of Pfaff dimension 2 at most for the kinematic
Velocity field |V) to be defined as the limit of |dx/ds). The topological torsion of each Vierbein must
vanish. However, there exist A4 spaces for which the Vierbiens are not of Pfaff dimension 2 at most,
and the topological torsion of one or more VierbeinsisNOT zero.

Hence the assumption that |dx) = |V)ds fails for such A4 spaces.

QED




