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The structures of a space of absolute parallelism are investigated in terms of differential
topology and the possible additional constraints imposed by equivalence classes of metrics.
A connection is made between projective spaces of absolute parallelism and those physical
systems that can be described by a 1-form of Action.

Preface

This article started out to be a more or less detailed (but partial) commentary on G .I. Shipov’s
book ”The Theory of the Physical Vacuum” (Evidently printed by the Moscow ST-Center, Russia,
1998 ISBN 5-7273-0011-8). The book arrived from the US on 08/17/99 at my mas in France, thanks
to V. Poponin). Shipov had a email address of shipov@aha.ru (but the book was written evidently
when he was a member of the International Institute for Theoretical and Applied Physics, RANS) and
V. Poponin had an email address of vpo-ponin@sj.znet.com (summer 1999). I do not know if the two
email addresses are valid at present. I got the book by sending $115.00 to V. Poponin, who mailed a
copy to me in France. Poponin’s address was

Vladimir Poponin, Ph.D. vpoponin@sj.znet.com
International Frontier Science Study Group
P.O. Box 421972
San Francisco, CA 94142-1972
Tel: 415-922-5776
Fax: 415-922-5715

As I studied and reread Shipov’s work in more detail it became evident that there was need for
clarification in certain areas. I got confused in the detail of tensor notation caused by certain
ambiguities of index conventions. That which follows is an attempt to make (at least part of) Shipov’s
work more transparent by taking care of notation and producing both a matrix and an index
presentation. The order of matrix products is important.

Introduction
In classical mechanics, the vacuum is typically characterized to be an empty void with a 3D

euclidean structure, and euclidean substructures. Particles are considered as entities placed in this void
which undergo motions characterized by a parameter, called time. The theory of electromagnetic fields
extends the mechanical concept of the vacuum to a 4D variety that will support electromagnetic waves.
In order to preserve the singular solutions (propagating electromagnetic discontinuities defined as
signals [1]) to Maxwell’s theory, the 4D vacuum apparently must have some structure. That is, the
singular solutions belong to an equivalence class of 4D systems related to one another either by the
linear Lorentz transformation, or by the non-linear Mobius (projective) transformations [2]. If different
observers are related by a Lorentz transformation to the vacuum, then if one observer detects a
propagating electromagnetic discontinuity, so will the Lorentz related observer detect a propagating



electromagnetic discontinuity. The vacuum is then defined as the restricted 4D variety that is
constrained by the imposition of the Minkowski metric, and the varieties equivalent to it under the
transformations mentioned above. In practice, the non-linear Mobius transformations are mostly
ignored.

The metric theory of gravitational fields seems to indicate that the vacuum with a gravitational field
must have metric structure that is not among the equivalence class of Lorentz transformations that
include the Minkowski pseudo euclidean metric. Quantum theory further complicates the view of the
vacuum by consideration of virtual states and pair production. The question remains: Just what is the
physical vacuum? It apparently is not the void of a euclidean space with euclidean substructures, but
current science seems to indicate that it is at least a 4D variety.

In his book ”The Theory of the Physical Vacuum” G. Shipov offers the interesting conjecture that
the Physical Vacuum is 4 dimensional space of Absolute Parallelism. As a 4 dimensional euclidean
space is a space of absolute parallelism, at first glance it would appear that the Shipov definition of the
vacuum is far too constrained to be of interest. Although euclidean spaces are examples of (often said
to be ”trivial”) spaces of absolute parallelism, but spaces of absolute parallelism are not just euclidean
”voids”. Spaces of absolute paralleelism can admit definite substructures that (according to Shipov)
have physical significance. For this idea Shipov deserves applause.

Consider a 4D variety that supports a matrix of C2 functions such that over the domain of support
the determinant of the matrix is never zero. The matrix is defined as the Basis Frame, or Repere
Mobile. The differentiable basis frame permits the decomposition of vector fields not only at every
point, but also in their nearby neighborhoods through a well defined linear connection. As the basis
frame F never has a zero determinant, the inverse basis frame G exists globally and is well defined
algebraically. A linear connection is derived by exterior differentiation of the identity F∘G= I to
give either

dF − FC = 0 or dF + ΔF = 0.     

The matrix C is defined as the right Cartan matrix of connection 1-forms. The matrix Δ is defined
as the left Cartan matrix of connection 1-forms. These connection equations are used to define what is
meant by parallel transport. [3]

By repeated exterior differentiation it is possible to show that the Cartan matrix of curvature
2-forms Θ vanishes:

Θ ≜ C^C + dC ⇒ 0     

Next, consider the representation of a set of differentials in terms of the basis frame:

|dxk 〉 = I ∘ |dxk 〉 = F ∘ G ∘ |dxk 〉 = F ∘ |σ〉     

Repeated exterior differentiation implies that the Cartan vector of Torsion 2-forms, |Σ〉 vanishes:

|Σ〉 ≜ C ∘ |σ〉 + |dσ〉 ⇒ 0.     

A space of absolute parallelism is defined as a variety for which the both Cartan vector of torsion
2-forms |Σ〉 and the Cartan matrix of curvature 2-forms Θ vanish. The development above thereby
shows that any space that supports a global basis frame with non-zero determinant is a domain of
Absolute Parallelism. Perhaps the simplest example is a projective space which supports at each point
a projective matrix of functions with non-zero determinant. These matrices define the general linear
group, which has two components. The first component admits an identity element (det >1), but the
second component does not (det <1).

From this point forward the focus will be on such varieties that support a global Basis Frame of
functions. Such spaces of absolute parallelism can have subspaces of interesting and unexpected
structure. For example, spaces of absolute parallelism can support a right Cartan matrix of connection
one forms that have certain anti-symmetry properties (of the 3 indexed coefficients Cbc

a ) associated



with the torsion of an affine connection (Cbc
a − Ccb

a ≠ 0. Yet the Cartan vector of torsion 2-forms is
zero! (This observation emphasizes that the two types of torsion are not the same.) If the Frame
matrix can be constructed from the Jacobian matrix of a parametric integrable map, then the Cartan
connection matrix is always symmetric (in the lower indices), and the concept of Affine torsion is
empty (Cbc

a − Ccb
a = 0. Exact integrable maps imply that the domain is free of Affine torsion.

Moreover, if the Jacobian matrix of the map is orthogonal, then the three index connection coefficients
of the right Cartan matrix are precisely the same as those constructed from the Christoffel formula
based on an induced metric.

From that which was mentioned above, the question arises: Is the arbitrary basis frame F
imposed on a variety uniquely integrable such that the parametric map can be determined? Note that
the concept of a space of absolute parallelism does not require such unique integrability. In fact, if the
basis frame is uniquely integrable, the connection is affine torsion free. The question of unique
integrability leads to the concept of ”topological” torsion, which is not the same as the affine torsion,
nor the same as Cartan’s torsion 2-forms. Topological torsion is related the arbitrary Frobenius
integrability of the Basis Frame, or Repere Mobile, and its inverse, which are characteristic of a space
of absolute parallelism.

The first question of integrability is: Given Fa
kξb as a basis frame, are the linear combinations

δk = Fa
kξbdξa perfect differentials, δk ⇒ dxk ? A necessary condition is that the exterior derivative

of δk must vanish. The requirement can be expressed by the equation.

exact integrability : dFa
kξb^|dξa 〉 = Fa

kξb ∘ C^|dξa 〉 ⇒ 0.     

The equation requires that C^|dξa 〉 ⇒ 0, which implies that the right Cartan matrix must consist of
coefficients such that (Cbc

a − Ccb
a = 0. Hence exact integrability of the basis frame precludes affine

torsion.
However, it may be true that the δk admit integrating factors λkξa. That is, each row of the

given Frame matrix can be multiplied by a function to yield a new Frame matrix F ′ such that the new
δk′ are exact.

F ′ = diagonal λkξa ∘ F     

The affine torsion relative to the old frame need not be zero, and yet through integrating factors, the
original non-integrable to exactness Frame can be transformed (globally) to an integrable one. For this
to be possible it must be true that the topological torsion of each δk must vanish:

Frobenius integrability requires : δk^dδk = 0.     

Such integrable, but not exact, frames can support affine torsion such that (Cbc
a − Ccb

a ≠ 0. This result
has its image in hydrodynamics. Potential flows are streamline flows without vorticity (curlv = 0).
There exists a parametric map to define the flow, and the flow is free of affine torsion. Lamb flows are
streamline flows where the vorticity is not zero. However, the velocity field components are such that
they satisfy the Frobenius condition. Hence there exists a parametric map, but the original flow admits
affine torsion.

It may be true that a particular Frame field admits integrability for none of its δk, part of its δk, or
for all of its δk. For example the Hopf Map generates a Frame which has 3 integrable δk and 1
non-integrable δk. On the other hand, the instanton frame has 3 non-integrable δk and 1 integrable δk.

This idea of spaces of absolute parallelism was also of interest to me, as I had (over the years)
managed to understand Cartan’s structural equations, which on first reading of Cartan seem to appear
”out the blue”. By use of (Whitney) embedding techniques, I could formulate examples of spaces
involving non-zero Cartan curvature 2-forms and non-zero Cartan torsion 2-forms as subspaces of
Euclidean spaces. The subspaces of euclidean spaces can be used to define most properties of a
manifold. However, for spaces of absolute parallelism, the algebra of Cartan’s structural equations is
nicely exhibited in the guise of projective geometries of dimension n+1.



See http://www22.pair.com/csdc/pdf/defects2.pdf

Projective geometries of absolute parallelism
Recall that a projective geometry is represented by a n+1 dimensional domain that supports an n+1

by n+1 Projective Matrix of functions with arguments over the n+1 independent variables. The sole
requirement of such a ”Projective Matrix” is that the matrix determinant is not equal to zero, thereby
defining the projective domain of support of the independent variables. Such projective spaces are
spaces of absolute parallelism, for the Cartan structural equations (as will be shown below) vanish over
those values of independent variables which form the projective domain of support. That is, the Cartan
curvature 2-forms and the Cartan torsion 2-forms vanish for projective geometries.

Projective geometries can be further constrained to form equivalence classes of Projective
Matrices. For example, a subgroup of the projective group of matrices are those with determinant +1.
Such projective transformations preserve orientation. Another example of a subgroup defines the class
of particle Affine transformations. These are examples of subgroups that do not require a metric
constraint. Further constraints can be imposed by specification of a metric.

On the domain of support, a Projective Matrix may be viewed as a matrix of linearly independent
basis vectors which can be used to define arbitrary vector quantities on the domain. An equivalence
class of basis matrices, has an element that can be used to define a Basis Frame F, or as Cartan puts
it , ”the Repere Mobile.” A major question is how a given class of Basis Frames are differentially
constrained in their neighborhoods. This question leads to the idea of a Connection. There are two
types of connections, depending on whether an active or passive viewpoint is utilized. Herein the two
points of view will be distinguished by the definitions given below for the ”Cartan (left) Connection”
and the ”Cartan (right) Connection”. It is a remarkable feature that both methods are applicable.

Due to notational inconsistencies (from this reader’s point of view), it is not clear whether Shipov
favors the left or the right Cartan connection. On p.181, and assuming that the symbol eb

j stands for an
array of contravariant columns, it would appear that Δjk

i as defined by eq (0.2) on p.181 and (5.18) on
p. 187 is associated with the left Cartan connection. However on page 185 Shipov states that e j

b

transforms as a (contra) vector, but then gives the rule for co-vector transformation in eq (5.3). This is
very confusing. In that which follows it will be presumed that Shipov focuses most attention on Δjk

i ,
the Cartan (left) connection. In order to distinguish this point of view, hereafter the Cartan (left)
connection will be called the Shipov connection, and the Cartan (right ) connection will be called the
Cartan connection. Certain anti-symmetric portions of the Shipov connection will be defined as the
Shipov torsion, where certain anti-symmetric portions of the Cartan connection will be defined as
Affine torsion. The two concepts are not the same, for the anti-symmetries are different. For example,
the anti-symmetries of the Cartan connection are zero for basis frames which are Jacobian matrices of
parametric mappings. (Affine torsion does not exist for integrable parametric maps.) The
anti-symmetries of the Shipov connection (defined as Shipov torsion) are not zero for the same types of
basis frames.

It should be emphasized before going any further that the concept of the Cartan vector of Torsion
2-forms (which vanish on a space of absolute parallelism) is not equivalent to the concept of either
Shipov torsion or Affine torsion, both of which need not vanish on a space of absolute parallelism.

Although most interest will be placed upon the domain of support, the regions for which the
determinant of the matrix of functions vanishes (the compliment to the domain of support) determines
hypersurfaces with specific and important topological features associated with its compliment. These
hypersurfaces sometimes can be interpreted as non-stationary domains of propagating discontinuities,
which are useful in defining shock waves, shear wakes, and electromagnetic signals in physical
systems.

The Shipov Connection vs. the Cartan Connection



The translation from Russian to English in Shipov’s book is very satisfactory (there are only a few
places where the English words used in the translation seem strange and do not flow smoothly), but
there are a significant number of typos, which in a book such as this one, which makes heavy duty
extensive use of tensor indices, can lead to difficulties now and then. The major problem for me was
one of notation, and as is usual in many tensor treatments, what are the independent variables. For
example Shipov on page 185 defines e j

b as a (contra-variant) vector and the symbol eb
j as a co vector,

but this is inconsistent with the transformation rule given by eq. (5.3) - which is the classic rule for
covariants, and classic tensor conventions where the upper index is the contra index and the lower
index is the co index. The more I study Shipov’s book, the more confused I get in deciding which (in
Shipov’s mind) is the basis frame (of contravariant column vectors) and which is the inverse basis
frame. Therefor I have rewritten the original commentary on Shipov’s book into a more well defined
format. I hope that I have not mis-interpreted Shipov’s concepts.

I am used to the constraint (for a space of absolute parallelism) that the exterior differential of a
basis frame be closed, forming a differential ideal. This closure constraint is a topological idea. That
is, the exterior differential of any basis vector in the set is a linear combination of basis vectors of the
set. This concept of closure is also in the spirit of the Cartan use of exterior algebra: the exterior
product of elements of the algebra are closed in a finite sense.

From the definition of a Basis Frame matrix of functions, F, its inverse, G, and the equation

F ∘ G = 1,     

it is remarkable that the differentials of the basis frame, dF, can be expressed in two different ways.
The closure point of view places emphasis on the Cartan connection, C a matrix of 1-forms defined
such that

Car tan : dF − F ∘ C = 0.     

The (right ) Cartan connection C acts on the basis frame F from the right. On the other hand
Shipov seems to place emphasis on a different point of view based on the formula,

Shipov : dF + Δ ∘ F = 0.     

The left Cartan or Shipov connection Δ acts on the basis frame F from the left.
The two formulations are not the same, for the Cartan (right matrix) of connection 1-forms implies

that the differential of any column basis vector is a linear combination of all column basis vectors of the
set.
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This is a concept of closure, a concept which is inherent in much of Cartan’s work. The formulation is
related to a ”passive” interpretation of the action of the total differential on any basis column vector.

The Shipov Connection (or Cartan left matrix connection) operates on the components of a given
vector
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The Shipov connection implies that the differential of any column vector is an active operation on that



column vector, and does not involve the other column basis vectors.
The remarkable feature of spaces of absolute parallelism is that they offer these two points of view.

One involves the change of a reference frame and the other involves an operation in a fixed frame.
This duality apparently extends the idea of relativity beyond that of a metrically constrained system.

It will be demonstrated below that the two connection matrices of 1-forms C and Δ are
conjugates related by a (negative) similarity transformation (where F ∘ G = 1,

Δ = −F ∘ C ∘ G.     

Hence to a factor of minus 1, the similarity invariants of both connections are the same. From a
topological point of view, this implies that different spaces of absolute parallelism can be classified
according to their similarity invariants. This topic is not discussed by Shipov, but will be taken up by
the present author.

The Integrable Parametric Case

The (right) Cartan connection
In order to set the stage, to get rid of notational inconsistencies, and to make the understanding of

spaces of absolute parallelism a bit more transparent, consider the special case of a space of absolute
parallelism defined by a parametric map, φ, from n variables (or parameters) ξb of the initial state
into a space of n variables xk of the final state.

φ : ξb ⇒ xk = φkξb     

An example is given by the position vector with components ct,x,y, z given in terms of spherical
coordinates ct, rsinθcosϕ, rsinθsinϕ, rcosθ. The differentials are related by the equation

dφ : |dξa 〉 ⇒ |dxk 〉 = ∂φkξb/∂ξa  ∘ |dξa 〉

=

1 0 0 0

0 sinθcosϕ r cosθcosϕ −r sinθ sinϕ

0 sinθ sinϕ r cosθ sinϕ r sinθcosϕ

0 cosθ −r sinθ 0

∘

dct

dr

dθ

dϕ

    

    

The matrix of partial differentials is the Jacobian matrix of functions with arguments on the initial state.
No metric and no domain of support has been specified. In that which follows the domain of support is
defined as that set of values ξb on the initial state, where the Jacobian determinant does not vanish
(r2 sinθ ≠ 0. The Jacobian matrix can be viewed as a matrix of contravariant vectors (on the final
state, xk ) in columns, and can be used as a basis frame (with arguments on the initial state ξb) on the
domain of support (where det∂φkξb/∂ξa  ≠ 0). That is, assume the basis frame is given by a set of
contravariant columns with row index k and column index a and with arguments on ξb :

Fa
k  = ∂φkξb/∂ξa .     

As yet there has been no metric imposed upon the space, but even without specification of a metric it is
possible to use the general formulas given above to define a Cartan connection

dF = F ∘ C = F ∘ −dG ∘ F = F ∘ G ∘ dF     

or a Shipov connection,

dF = Δ ∘ F = −F ∘ dG ∘ F = dF ∘ G ∘ F     

In classical tensor analysis, the concept of an affine connection is associated with the (right) Cartan
matrix (ref. L. Brand) as follows: (Remember, all the functions have arguments ξc



dFa
k  = Fb

k  ∘ Cac
b dξc  = Fb

k  ∘ G j
b ∘ d Fa

j

= Fb
k  ∘ G j

b ∘ ∂2φ jξm/∂ξc∂ξadξc  .

    

    

As the system is integrable and (assumed) twice differentiable, it follows that the coefficient functions
of the connection are symmetric

Cac
b ⇒ Γac

b = Γca
b = G j

b ∘ ∂2φ jξm/∂ξc∂ξadξc .     

In fact, if one computes the pullback metric gab on the initial domain ξc induced by the quadratic
form on the final state, η jkdx jdxk

gabξc = Fa
j ∘ η jk  ∘ Fb

k ,     

and then uses the classic Christoffel formulas for deriving a connection from a metric,

Christoffel : Γac
b ξc ⇒ ac

b  = gbe∂gce/∂ξa + ∂gea/∂ξc − ∂gac/∂ξe.     

it follows that, for a Jacobian basis frame, the Cartan connection is the same as the Christoffel
connection, and the connection is (affine) torsion free:

If Fa
k  = ∂φkξb/∂ξa , then Cac

b = ac
b .     

In general, the basis frame Fa
j need not be deduced from an integrable mapping. The

coefficient functions of the (right) Cartan matrix, symbolized by Cac
b ξe, are not necessarily

symmetric in the lower indices, and the symmetric parts are not necessarily generated by the
Christoffel formulas. It is of some interest to decompose the Cartan connection into its symmetric and
anti-symmetric parts.

Cac
b = Γac

b + ωac
b     

It is the anti-symmetric parts, ωac
b = −ωca

b , of the (right) Cartan connection that lead to the concept of
Affine torsion. Note that this has nothing to do with metric. (Compare Shipov (5.77)). It is also
possible to think of the symmetric part of the Cartan connection to be composed of a Christoffel part
and a non-Christoffel part.

Γac
b = ac

b  + Tac
b     

The combination

Tac
b = Tac

b + ωac
b     

forms what Shipov defines as the Ricci rotation coefficients.
For the integrable case, the Jacobian formulation of a basis frame does NOT generate affine

torsion, and the Ricci rotation coefficients vanish. A two surface immersed into 3 euclidean
dimensions does not have affine torsion. (It must be remembered that the basis frame and the
connection are defined in terms of the variables of the initial state, ξb.

A Maple work sheet giving examples of these constructions can be obtained at
http://www22.pair.com/csdc/maple/a4sphjac.mws
A pdf file of the output of the Maple computation is at
http://www22.pair.com/csdc/pdf/a4sphjac.pdf

The (left) Cartan - Shipov connection.
It is assumed that Cartan left connection is the Shipov connection Δ defined by the equations,

dFb
k  + Δie

k dξe  ∘ Fb
i  = 0     

such that

Δie
k dξe  = Fa

k  ∘ dG i
a  = −dFa

k  ∘ G i
a      

For the Jacobian Frame,



Δie
k = −∂2φk/∂ξe∂ξa ∘ G i

a     

from which it is to be noted that Δie
k is not necessarily symmetric in the ie indices. For the spherical

coordinate mapping with the basis frame represented by the Jacobian matrix, there are 19 non zero
partial derivative components to the Shipov connection. The anti-symmetric part of Δie

k is defined as
Shipov torsion, (5.28)

Ω ie
k = −1/2Δie

k − Δei
k .     

There are 16 non-zero components to the Shipov torsion as defined above, while the affine torsion ωac
b

is zero for the same example. Shipov torsion of the left Cartan matrix is not the same as Affine torsion
constructed from the anti-symmetric components of the right Cartan connection, nor is it directly
related to the Cartan torsion 2-forms.

Now is where I become truly confused with notation, for Shipov not only decomposes Δie
k into the

sum of a symmetric and an anti-symmetric parts (which is reasonable), but then also decomposes the
Shipov connection as

Δie
k =  ie

k  + T ie
k .     

From the point of view of the integrable mapping given above, the Christoffel symbols are generated
from the metric on the initial state (indices abc), not the final state (indices ijk). The metric on the final
state are constants, hence the associated Christoffel symbols should vanish.

The details of the computations for Jacobian basis frames is given in the Maple program
http://www22.pair.com/csdc/maple/a4sphjac.mws

The inverse map and the Cartan connection
Now reverse the direction of the mapping and assume that the final state is the set of variables

ξe and the initial state is defined by the variables xk. The given map is of the form

ψ : xk ⇒ ξb = ψbxk     

The differentials are related by the equation

dψ : |xk 〉 ⇒ |dξb 〉 = ∂ψbxk/∂xk  ∘ |dxk 〉     

The Jacobian matrix is a set of contravariant columns on the final state, with arguments on the initial
state. The basis frame is now chosen as Fk

b  = ∂ψbxk/∂xk . From the definition of the inverse

Fk
bx ∘ Gb

j x = 1     

it is again possible to define a right and a left Cartan matrix. Everything is more or less the same as
before, except that the abc indices become ijk indices and the arguments of the functions and
differentials are xk instead of ξb.

There is one important difference. The metric on the initial state is presumed to be a set of
constants, η jk , and therefore its Christoffel symbols vanish. Therefor the right Cartan matrix, now
written as C jk

i x is not the same as the Christoffel symbols in the integrable case. It is possible to
induce a metric inverse on the final state with arguments on the initial state by means of the
construction gabx = Fj

aη jkFk
b, find its inverse, and then compute the inverse gabx on the final state.

Then Christoffel symbols are awkward to compute, for the map giving the xk as functions of ξb has not
been specified.

The Basis Frame
Shipov evidently assumes a variety of independent variables upon which can be constructed a basis

frame of functions, ea
i with (rmk interpretation) a = 0,1,2,3 as a column (lower) index and

i = 0,1,2,3 acting as a row (upper) index. The columns of the Basis Frame may be interpreted as



contravariant vectors, or alternatively the rows of the Basis Frame may be viewed as components of
covariant vectors; sometimes both interpretations are applicable.. The domain of interest is
constrained such that the determinant of Basis Frame, ea

i , consisting of independent rows or columns
of functions of base variables, is not zero. It follows that an inverse matrix exists, which Shipov
designates with the symbol, e i

a. I prefer the notation Fa
i  for the basis frame and G j

b for its inverse,
such that the transpose and the inverse are easily distinguished, and the order of matrix products
becomes obvious.

Now the matrix of functions Fa
i  used to define the Basis Frame for a space of absolute

parallelism need not be generated by a parametric mapping. All that is required for the space of
absolute parallelism is that the identity

Fa
i  ∘ G j

a = δ j
i = I     

is valid. From this equation, the total differentials with respect to the independent variables (what ever
they may be) are given by the equation,

dFa
i  ∘ G j

a + Fa
i  ∘ dG j

a = 0.     

(I believe that this simple formulation was first brought to my attention via the works of Coxeter).
Multiplication from the right by the matrix Fb

j  produces the result

dFb
i  + Fa

i  ∘ d G j
a ∘ Fb

j  = 0,     

There are now two possibilities.

Possibility 1 : dFb
i  + Δj

i ∘ Fb
j = 0,     

where

Δj
i = Fa

i  ∘ dG j
a = −dFa

i  ∘ G j
a     

equivalent to Shipov (5.27) and Shipov (5.24) respectively, and

Possibility 2 : dFb
i  − Fa

i  ∘ Cb
a  = 0,     

where

Cb
a  = −dG j

a ∘ Fb
j  = Gm

a  ∘ dFb
m.     

The matrix Cbc
a dξc  defines the Cartan matrix of connection 1-forms. In Shipov notation,

Cbc
a dξc  ≡ Δbc

a dξc ,     

and the two preceding equations are recognized as being related to Shipov (5.65) and (5.67). Not
until the partial derivatives are required is it necessary to state how (and where) the arguments ξc of
the connections are defined

Herein, the matrix Δjc
i dξc will be defined as the Shipov matrix of connection.1-forms, where the

matrix Cbc
a dξc  will be defined as the Cartan matrix of connection 1-forms. The two matrices are

distinct, but are (negative) similarity conjugates of one another.

Δjc
i dξc = −Fa

i  ∘ Cbc
a dξc  ∘ G j

b.     

It follows that the total exterior differentials of the basis frame can be expressed as either

Shipov : dFb
i  + Δjc

i dξc ∘ Fb
j = 0     

or

Car tan : dFb
i  − Fa

i  ∘ Cbc
a dξc  = 0.     

The choice of plus or minus signs depends upon historical conventions.
Equivalent formulas can be given for the differentials of the Inverse matrix:

Shipov : d G j
a − Gm

a  ∘ Δjc
mdξc = 0     



or

Car tan : d G j
a + Cbc

a dξc  ∘ G j
b = 0.     

The Vierbeins and Cartan’s Equations of Structure
Given the Inverse matrix Gk

a it is possible to define a set of 1-forms, defined as the Vierbeins,
such that (compare Shipov 5.66)

|σa 〉 = Gk
a ∘ |dxk 〉.     

However, these Vierbein 1-forms may or may not be exact, closed, or integrable in the sense of
Frobenius. From Fa

k  ∘ |σa 〉 = |dxk 〉, and the assumption, d|dxk 〉 = 0, it follows that

Fa
k  ∘ |dσa 〉 + Cbc

a dξc  ∘ |σb 〉 = Fa
k  ∘ |Σa 〉 = 0,     

such that the Cartan Torsion 2-forms |Σa 〉 generated by the first Cartan structural equation, must
vanish:

|Σa 〉 = |dσa 〉 + Cbc
a dξc  ∘ |σb 〉 = 0.     

This result is valid whether or not the vierbiens are integrable.
The second structural equation follows by exterior differentiation of

Fe
i  ∘ Caf

e dξf ^Cbc
a dξc  + dCbc

e dξc  = Fe
i  ∘ Θb

e  = 0,     

such that Cartan matrix of Curvature 2-forms Θb
e  must vanish.

Θb
e  = Caf

e dξf ^Cbc
a dξc  + dCbc

e dξc  = 0.     

The two constraints

Θb
e  = 0 and |Σa 〉 = 0,     

on an n dimensional variety define a space of Absolute Parallelism. (In this case, an A4). The only
requirement is that there exist a projective domain of support for the differentiable functions of the
Frame matrix. These equations are equivalent to Shipov 5.73 to 5.76 where Shipov has defined the
Cartan connection Cb

a  by the symbol Δb
a . (Note that Δb

a  ≠ Δj
i .

Integrability
If a Basis Frame Fe

i ξa is specified on a domain of independent variables, and it is presumed
that the differentials dξa are well defined and exact, it is by no means clear that the induced objects
δxk = Fe

i ξadξe are exact perfect differentials, hence integrable. In order to be integrable it is
required that each of the objects δxk satisfy the Frobenius integrability conditions (for each fixed k),
δxk^dδxk = 0. If the conditions are not satisfied, then the δxk are not integrable. If the conditions
are satisfied, integrability may or may not require an integrating factor (for each k).

Suppose that integrability is satisfied without an integrating factor. Then a necessary condition is
that

dFc
i ξa^dξc = Fa

i Cbc
a − Ccb

a dξb^dξc = 0.     

This condition requires that the Cartan (right) connection be symmetric in the lower bc indices. In
other words, integrability to exactness requires that the Affine torsion is zero.

However, the integrability conditions may be satisfied with the use of an integrating factor. In this
situation the Cartan connection need not be symmetric in the lower bc indices. The integrable
connection can generate an Affine torsion field. However the Topological Torsion, for each k,
vanishes: δxk^dδxk = 0.

The third case for which there can exist a non-zero affine torsion field is when the Topological
Torsion is not zero. Then the system is not uniquely integrable. In the integrable parametric example



given above, the affine torsion field vanishes. For the diagonal Frame Field generated from the
”square root” of the metric, (see below) the connection generates an Affine torsion field. The terms
δxk are not all exact, but do admit an integrating factor. All diagonal frame fields have this property.

Additional Metric constraints
If a metric gabξ

e is defined on the domain of projective support (with inverse metric G, then
it is possible to define a Christoffel connection from the classic formula,

Christoffel : Γac
b ⇒ ac

b  = Gbe∂gce/∂ξa + ∂gea/∂ξc − ∂gac/∂ξe.     

It is possible to decompose the Cartan (right) connection according to the formula,

Cac
b = ac

b  + Tac
b     

where the Tac
b can contain the antisymmetric parts. (see (5.77). In fact, for the Jacobian basis frame,

the Tac
b = 0.

Shipov on the other hand seems to decompose the ”Shipov connection” Δjk
i for parallel transport on

an A4 space into a ”Christoffel part” and a ”Ricci rotation” (5.28).

Δjk
i =  jk

i  + T jk
i .     

It is hard to decide how to construct the  jk
i  as these must depend upon the metric on the final state.

To substitute the values of the Christoffel symbols on the initial state seem senseless. The
anti-symmetric part of the Shipov connection is (supposedly) included in the T jk

i . Shipov defines the
negative of the anti-symmetric component of Δjk

i as the ”Torsion Field” (eq.5.20):

Ω jk
..i = −Δjk

i − Δkj
i .     

Note that the Shipov Torsion field defined from the Shipov connection (which is not necessarily
zero) is NOT the same as the Cartan Torsion 2-forms (which are necessarily zero for a space of
absolute parallelism), nor is it the same as the field generated by the anti-symmetric parts of
the Cartan connection.

An example: The Diagonal Frame generated by the metric of Spherical
Coordinates

Consider the map from spherical coordinates to euclidean coordinates given by the equations above
and note that a Basis Frame of the form

F =

1 0 0 0

0 1 0 0

0 0 r 0

0 0 0 r sinθ

    

generates the metric

g =

1 0 0 0

0 −1 0 0

0 0 −r2 0

0 0 0 −r2 sinθ2

    

via the formula

gabξc = Fa
j ∘ η jk  ∘ Fb

k ,     

The diagonal basis frame generates the Cartan connection,



Cb
a  =

0 0 0 0

0 0 0 0

0 0 dr/r 0

0 0 0 dr/r + cotθdφ

    

and the Shipov connection

Δj
i =

0 0 0 0

0 0 0 0

0 0 −dr/r 0

0 0 0 −dr/r − cotθdφ

    

The induced metric leads to Christoffel coefficients,

Γb
a  =

0 0 0 0

0 0 −rdθ −r sin2θdφ

0 dθ/r dr/r − sinθcosθdφ

0 dφ/r cotθdφ dr/r + cotθdθ

    

and Ricci coefficients

Tb
a  =

0 0 0 0

0 0 +rdθ +r sin2θdφ

0 −dθ/r 0 + sinθcosθdφ

0 −dφ/r −cotθdφ 0

    

with Shipov Torsion coefficients, defined as the anti-symmetric Δjk
i − Δkj

i /2 and they are equal to the
negative of the Cartan torsion (anti-symmetric) coefficients

ω21
2 = 1/2r = −Ω21

2 ,

ω31
3 = 1/2r = −Ω31

3 ,

ω32
3 = cosθ/2 sinθ = −Ω32

3 .

    

    

    

These results seem to agree with the Shipov presentation on page 217, for a diagonal basis frame,
except that the computations presented by Shipov have been done using ijk indices, where herein the
abc indices are used. (I am still trying to resolve the differences in notation and perspective. It would
appear that Shipov has switched to the right Cartan matrix for the presentation on p 217).

Note the remarkable differences between the diagonal basis frame and the Jacobian basis frame
given above, although both are for a spherical coordinate system.

Further exterior differentiation leads to other useful expressions and the Bianchi identities (see
http://www22.pair.com/csdc/pdf/defects2.pdf)

Metric Constraints and Polarities
In Projective Geometries there exist two types of maps, called Collineations and Correlations.

Collineations map points into points and hypersurfaces into hypersurfaces. In tensor analysis think of
collineations as transformations that map contra-variant vectors (points) into contra-variant vectors,
and co-vectors (hypersurfaces) into co-vectors. The Jacobian matrix of a map and its transpose are
examples of collineations. Correlations map points into hypersurfaces and hypersurfaces into points.



The subset of symmetric correlations are defined as polarities. The usual concept of a metric as a
symmetric matrix can be viewed as a map that takes contra-variant vectors into co-variant vectors.
The metric tensor gμν  is an example of a symmetric correlation, or a polarity.

**** More on projective geometries later

Appendix

Definition A variety x is a space of Absolute Parallelism if the matrix of Cartan curvature 2-forms Θ
and the vector of Cartan torsion 2-forms |Σ〉 defined on the variety vanish.

Theorem 1: Consider an arbitrary matrix F of nxn functions on the variety x where the variety is now
restricted such that detF<> 0. Then the restricted domain is a space of Absolute Parallelism

Conjecture Shipov: The physical vacuum is a 4 dimensional space of Absolute Parallelism , further
restricted to the Lorentz equivalence class of Basis Frame matrices, F, such
that transposeFMF= M. The matrix M is the Minkowski index matrix.

Theorem 2: The domain of support for an arbitrary 1-form of Action on a variety generates a space of
Absolute Parallelism.

Theorem 3: There exist A4 spaces which DO NOT support a kinematic Velocity Field. (The unique
limit of dx/ds = V(x,y,z,Ct) does not exist globally.)

Theorem 4: For a basis frame constructed from an integrable parametric map of maximal rank, the
Affine torsion on the initial state is zero, and the Cartan connection generates the Christoffel
symbols for the induced metric on the initial state.

Proof of Theorem 1:
From detF <> 0 there exists G such that FG = 1.
Hence dF = F−dGF = FC, where C is the matrix of Cartan 1-forms.
The matrix of Cartan curvature 2-forms is defined as

Θ = C^C + dC.     

The Vierbein 1-forms are defined as

|σ〉 = G ∘ |dx〉.     

The vector of Cartan torsion 2-forms is defined as

|Σ〉 = C∘|σ〉 + |dσ〉     

As ddF= 0, it follows that F∘C^C + dC = 0; hence

Θ= C^C + dC = 0.     

From

|dx〉 = F ∘ |σ〉     

and as |ddx〉 = 0, it follows that F ∘ C ∘ |σ〉 + |dσ〉 = 0; hence

|Σ〉 = C ∘ |σ〉 + |dσ〉 = 0.     

QED



Proof of Theorem 2.
Given an arbitrary action 1-form, A = Axdx + Aydy + .. − φdt.
Construct algebraically n − 1 associated direction fields e such that

ieA = 0.     

example:

|e1 〉 =

φ

0

⋮

Ax

    

Construct the Frame

F = e1,e2, ...,n     

Choose n to be the direction field with components created by the components of the 1-form of
Action.

Then (for a 4D variety)

detF = φ2Ax
2 + Ay

2 + Az
2 + φ2 ≠ 0     

on the domain of support of φ.
Hence the restricted domain is a space of Absolute Parallelism, by theorem 1.
These spaces are not necessarily Lorentzian. This method of generating a basis frame connects the

Calculus of variations (based upon Action 1-forms) to spaces of absolute parallelism. Subspaces of
spaces of absolute parallelism may or may not have domains of zero Cartan curvature or zero Cartan
torsion.

If a space of absolute parallelism is further constrained to those matrices of Basis Frames which
are symmetric (such as metrics) then the projective frames (defined as detF ≠ 0) produce what are
called polarities. Polarities are special projective transformations that establish duality relationships in
projective geometry.

The Metric induced connection [Γ] of 40 component functions may only be part of the Cartan
connection C of 64 component functions.

Shipov asserts that the Cartan connection on metric spaces can be composed of a Christoffel
connection (metric and its derivatives) plus another component dependent algebraically upon the
Cartan coefficients and the metric components.

Shipov Torsion is related to an antisymmetric combination of the Cartan Connection coefficients.
(It is NOT the same as the Anti-symmetric part of the Cartan matrix of connection 1-forms, and it is
not the same as Topological Torsion, for Shipov torsion can exist when the Topological Torsion is
zero)

Proof of theorem 3:
Assume that

|dx〉 = |V〉ds     

exists globally.
Then, from the definition of the Vierbeins,

|σ〉 = G ∘ |dx〉 = G ∘ |V〉ds = |W〉ds.     

where the W are functions.



IF true, then

|dσ〉 = |dW〉^ds,     

and

|σ^dσ〉 = |Wds^dW〉^ds = 0.     

Hence the Vierbeins must be integrable and of Pfaff dimension 2 at most for the kinematic
Velocity field |V〉 to be defined as the limit of |dx/ds〉. The topological torsion of each Vierbein must
vanish. However, there exist A4 spaces for which the Vierbiens are not of Pfaff dimension 2 at most,
and the topological torsion of one or more Vierbeins is NOT zero.

Hence the assumption that |dx〉 = |V〉ds fails for such A4 spaces.
QED


